Package 'rotationForest'

Title: Fit and Deploy Rotation Forest Models
Description: Fit and deploy rotation forest models ("Rodriguez, J.J., Kuncheva, L.I., 2006. Rotation forest: A new classifier ensemble method. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1619-1630 <doi:10.1109/TPAMI.2006.211>") for binary classification. Rotation forest is an ensemble method where each base classifier (tree) is fit on the principal components of the variables of random partitions of the feature set.
Authors: Michel Ballings and Dirk Van den Poel
Maintainer: Michel Ballings <[email protected]>
License: GPL (>= 2)
Version: 0.1.3
Built: 2025-02-09 02:58:23 UTC
Source: https://github.com/cran/rotationForest

Help Index


Predict method for rotationForest objects

Description

Prediction of new data using rotationForest.

Usage

## S3 method for class 'rotationForest'
predict(object, newdata, all = FALSE, ...)

Arguments

object

An object of class rotationForest

newdata

A data frame with the same predictors as in the training data.

all

Return the predictions per tree instead of the average.

...

Not used currently.

Value

A vector containing the response scores.

Author(s)

Michel Ballings and Dirk Van den Poel, Maintainer: [email protected]

References

Rodriguez, J.J., Kuncheva, L.I., 2006. Rotation forest: A new classifier ensemble method. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1619-1630. doi:10.1109/TPAMI.2006.211

See Also

rotationForest

Examples

data(iris)
y <- as.factor(ifelse(iris$Species[1:100]=="setosa",0,1))
x <- iris[1:100,-5]
rF <- rotationForest(x,y)
predict(object=rF,newdata=x)

Binary classification with Rotation Forest (Rodriguez en Kuncheva, 2006)

Description

rotationForest implements an ensemble method where each base classifier (tree) is fit on the principal components of the variables of random partitions of the feature set.

Usage

rotationForest(x, y, K = round(ncol(x)/3, 0), L = 10, verbose = FALSE,
  ...)

Arguments

x

A data frame of predictors (numeric, or integer). Categorical variables need to be transformed to indicator (dummy) variables. At minimum x requires two columns.

y

A factor containing the response vector. Only {0,1} is allowed.

K

The number of variable subsets. The default is the value K that results in three features per subset.

L

The number of base classifiers (trees using the rpart package). The default is 10.

verbose

Boolean. Should information about the subsets be printed?

...

Arguments to rpart.control. First run library(rpart).

Value

An object of class rotationForest, which is a list with the following elements:

models

A list of trees.

loadings

A list of loadings.

columnnames

Column names of x.

Author(s)

Michel Ballings and Dirk Van den Poel, Maintainer: [email protected]

References

Rodriguez, J.J., Kuncheva, L.I., 2006. Rotation forest: A new classifier ensemble method. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1619-1630. doi:10.1109/TPAMI.2006.211

See Also

predict.rotationForest

Examples

data(iris)
y <- as.factor(ifelse(iris$Species[1:100]=="setosa",0,1))
x <- iris[1:100,-5]
rF <- rotationForest(x,y)
predict(object=rF,newdata=x)

Display the NEWS file

Description

rotationForestNews shows the NEWS file of the rotationForest package.

Usage

rotationForestNews()

Author(s)

Michel Ballings and Dirk Van den Poel, Maintainer: [email protected]

Examples

rotationForestNews()