Package: imputeMissings 0.0.4

imputeMissings: Impute Missing Values in a Predictive Context

Compute missing values on a training data set and impute them on a new data set. Current available options are median/mode and random forest.

Authors:Matthijs Meire [aut], Michel Ballings [aut, cre], Dirk Van den Poel [aut]

imputeMissings_0.0.4.tar.gz
imputeMissings_0.0.4.zip(r-4.5)imputeMissings_0.0.4.zip(r-4.4)imputeMissings_0.0.4.zip(r-4.3)
imputeMissings_0.0.4.tgz(r-4.4-any)imputeMissings_0.0.4.tgz(r-4.3-any)
imputeMissings_0.0.4.tar.gz(r-4.5-noble)imputeMissings_0.0.4.tar.gz(r-4.4-noble)
imputeMissings_0.0.4.tgz(r-4.4-emscripten)imputeMissings_0.0.4.tgz(r-4.3-emscripten)
imputeMissings.pdf |imputeMissings.html
imputeMissings/json (API)
NEWS

# Install 'imputeMissings' in R:
install.packages('imputeMissings', repos = c('https://ballings.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.89 score 77 scripts 402 downloads 2 exports 1 dependencies

Last updated 3 months agofrom:864f1aa5e3. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 30 2024
R-4.5-winOKOct 30 2024
R-4.5-linuxOKOct 30 2024
R-4.4-winOKOct 30 2024
R-4.4-macOKOct 30 2024
R-4.3-winOKOct 30 2024
R-4.3-macOKOct 30 2024

Exports:computeimpute

Dependencies:randomForest